Chapter I Wireless Introduction

Wireless Comes of Age

- Guglielmo Marconi invented the wireless telegraph in 1896
 - Communication by encoding alphanumeric characters in analog signal
 - Sent telegraphic signals across the Atlantic Ocean
- Communications satellites launched in 1960s
- Advances in wireless technology
 - Radio, television, mobile telephone, mobile data, communication satellites
- More recently
 - Wireless networking, cellular technology, mobile apps, Internet of Things

Cellular telephone

- Started as a replacement to the wired telephone
- Early generations offered voice and limited data
- Current third and fourth generation systems
 - Voice
 - Texting
 - Social networking
 - Mobile apps
 - Mobile Web
 - Mobile commerce
 - Video streaming

Wireless Impact

- Profound
- Shrinks the world
- Always on
- Always connected
- Changes the way people communicate
 - Social networking
- Converged global wireless network

Figure 1.1 Some Milestones in Wireless Communications

Introduction 1-5

Global cellular network

Growth

- 11 million users in 1990
- Over 7 billion today
- Mobile devices
 - Convenient
 - Location aware
 - Only economical form of communications in some places

Global cellular network

Generations

- IG Analog
- 2G Digital voice
 - Voice services with some moderate rate data services
- 3G Packet networks
 - Universal Mobile Phone Service (UMTS)
 - CDMA2000
- 4G New wireless approach (OFDM)
 - Higher spectral efficiency
 - 100 Mbps for high mobility users
 - 1 Gbps for low mobility access
 - Long Term Evolution (LTE) and LTE-Advanced
- 5G OFDM, NOMA, NR

Mobile device revolution

- Originally just mobile phones
- Today's devices
 - Multi-megabit Internet access
 - Mobile apps
 - High megapixel digital cameras
 - Access to multiple types of wireless networks
 - Wi-Fi, Bluetooth, 3G, and 4G
 - Several on-board sensors
- Key to how many people interact with the world around them

Mobile device revolution

- Better use of spectrum
- Decreased costs
- Limited displays and input capabilities
- Tablets provide balance between smartphones and PCs
- Long distance
 - Cellular 3G and 4G
- Local areas
 - Wi-Fi
- Short distance
 - Bluetooth, ZigBee

Future trends

- LTE-Advanced and gigabit Wi-Fi now being deployed
- Machine-to-machine communications
 - The "Internet of Things"
 - Devices interact with each other
 - Healthcare, disaster recovery, energy savings, security and surveillance, environmental awareness, education, manufacturing, and many others
 - Information dissemination
 - Data mining and decision support
 - Automated adaptation and control
 - Home sensors collaborate with home appliances, HVAC systems, lighting systems, electric vehicle charging stations, and utility companies.
 - Eventually could interact in their own forms of social networking

Future trends

- Machine-to-machine communications
 - 100-fold increase in the number of devices
 - Type of communication would involve many short messages
 - Control applications will have real-time delay requirements
 - Much more stringent than for human interaction

Future trends

- Future networks
 - 1000-fold increase in data traffic by 2020
 - 5G Not defined but envisioned by 2020
- Technologies
 - Network densification many small cells
 - Device-centric architectures focus on what a device needs
 - Massive multiple-input multiple-output (MIMO) 10s or 100s of antennas
 - To focus antenna beams toward intended devices
 - Millimeter wave (mmWave) frequencies in the 30 GHz to 300 GHz bands
 - Have much available bandwidth.
 - But require more transmit power and have higher attenuation due to obstructions
 - Native support for machine to machine communication
 - Sustained low data rates, massive number of devices, and very low delays.

The trouble with wireless

- Wireless is convenient and less expensive, but not perfect
- Limitations and political and technical difficulties inhibit wireless technologies
- Wireless channel
 - Line-of-sight is best but not required
 - Signals can still be received
 - Transmission through objects
 - Reflections off of objects
 - Scattering of signals
 - Diffraction around edges of objects

The trouble with wireless

- Wireless channel
 - Reflections can cause multiple copies of the signal to arrive
 - At different times and attenuations
 - Creates the problem of multipath fading
 - Signals add together to degrade the final signal
 - Noise
 - Interference from other users
 - Doppler spread caused by movement

Combating problems

- Modulation use a signal format to send as many bits as possible
- Error control coding add extra bits so errors are detected/corrected.
- Adaptive modulation and coding dynamically adjust modulation and coding to current channel conditions.
- Equalization counteract the multipath effects of the channel.
- Multiple-input multiple-output systems use multiple antennas
 - Point signals strongly in certain directions
 - Send parallel streams of data.
- Direct sequence spread spectrum expand the signal bandwidth
- Orthogonal frequency division multiplexing break a signal into many lower rate bit streams
 - Each is less susceptible to multipath problems.

Political difficulties

- Between companies
 - Need common standards so products interoperate
 - Some areas have well agreed-upon standards
 - Wi-Fi, LTE
 - Not true for Internet of Things technologies
- Spectrum regulations
 - Governments dictate how spectrum is used
 - Many different types of uses and users
 - Some frequencies have somewhat restrictive bandwidths and power levels
 - Others have much more bandwidth available