
Traffic Modeling(2)



2.2

Modeling Traffic as a Stochastic Process

 A good (descriptive) model of network traffic is a 

stochastic process

 We are generally talking about number of bytes (or 

packets or flows) per unit time

 A (discrete time) stochastic process is a collection of

random variables {Xi, i=1, 2, . . .}



2.3

Distribution Function

 Given a random variable X, we can fully characterize 

it by its probability distribution function (pdf):

 i.e. f(x) = Px x

 Estimated using a histogram



2.4

Histograms and CDFs

 A histogram is often a poor estimate of the pdf 𝐟(𝐱) 

because it involves binning the data

 The CDF 𝐅 𝐱 = 𝐏 𝐗𝐢 ≤ 𝐱 will have a point for 

each distinct data value; can be much more accurate

 Statistical data binning is a way to group numbers of 

more or less continuous values into a smaller 

number of "bins"



2.5

Histograms and CDFs

 A histogram is often a poor estimate of the pdf 𝐟(𝐱) 

because it involves binning the data

 The CDF 𝐅 𝐱 = 𝐏 𝐗𝐢 ≤ 𝐱 will have a point for 

each distinct data value; can be much more accurate



2.6

Modeling a Distribution

 We can form a compact summary of a pdf 𝐟(𝐱) if we 

find that it is well described by a standard 

distribution – e.g.,

 Gaussian (Normal)

 Exponential

 Poisson

 Pareto



2.7

Modeling a Distribution

 Statistical methods exist for asking whether a 

dataset is well described by a particular distribution

 Estimating the relevant parameters



2.8

Distributional Tails

 A particularly important part of a distribution is the 

(upper) tail

 𝐏[𝐗 > 𝐱]

 Large values dominate statistics and performance

 “Shape” of tail critically important



2.9

Light Tails, Heavy Tails

 Light tails– Exponential or faster decline

𝒇𝟏 𝒙

 Heavy tails–Slower than any exponential

𝒇𝟐 𝒙



2.10

History: Heavy Tails Arrive & Today’s traffic

 pre-1985: Scattered measurements note high 

variability in computer systems workloads

 1985 – 1992: Detailed measurements note “long” 

distributional tails

 File sizes

 Process lifetimes



2.11

History: Heavy Tails Arrive & Today’s traffic

 1993 – 1998: Attention focuses specifically on 

(approximately) polynomial tail shape: “heavy tails”

 Post-1998: Heavy tails used in standard models



2.12

Heavy-tailed

 A distribution is heavy-tailed if the asymptotic shape 

of the distribution follows a power-law so that

𝑷 𝑿 > 𝒙 ≅ 𝒙−𝜶 𝐚𝐬 𝒙 ⟶ ∞,𝟎 < 𝜶 < 𝟐

 The parameter 𝜶 describes the heaviness of the tail 

distribution so that as 𝜶 gets smaller the distribution 

becomes more heavy-tailed

 Larger portion of the probability mass may be 

present in the tail of the distribution



2.13

The effect of in a heavy-tailed distribution

 The asymptotic (i.e. tail) shape of the distribution is 

hyperbolic and converges slower than the 

exponential distribution



2.14

A Fundamental Shift in Viewpoint

 Traditional modeling methods have focused on 

distributions with “light” tails

 Tails that decline exponentially fast (or faster)

 Arbitrarily large observations are vanishingly rare



2.15

A Fundamental Shift in Viewpoint

 Heavy tailed models behave quite differently

 Arbitrarily large observations have non-negligible 

probability

 Large observations, although rare, can dominate a 

system’s performance characteristics



2.16

Use of Heavy-tailed

 Sizes of data objects in computer systems

 Files stored on Web servers

 Data objects/flow lengths traveling through the 

Internet

 Files stored in general-purpose Unix file systems

 I/O traces of file system, disk, and tape activity



2.17

Use of Heavy-tailed

 Process/Job lifetimes

 Node degree in certain graphs

 Inter-domain and router structure of the Internet

 Connectivity of WWW pages

 Zipf’s Law



2.18

Zipf’s law

 Zipf’s Law is a statistical distribution in certain data 

sets, such as words in a linguistic corpus, in which 

the frequencies of certain words are inversely 

proportional to their ranks. 



2.19

Caution of Heavy-tails

 Workload metrics following heavy tailed distributions 

are extremely variable

 For example, for heavy tails:

 When 𝛼 ≤ 2, distribution has infinite variance

 When 𝛼 ≤ 1, distribution has infinite mean

 In practice, empirical moments are slow to converge 

or non-convergent



2.20

Pareto distribution

 The Pareto distribution 

process produces 

independent and identically 

distributed(IID) inter-arrival 

times

 The simplest heavy-tailed 

distribution 

 𝑘 is the minimum value of 𝑥
(simply the scaling factor) 

and doesn’t affect the tail 

distribution
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2.21

Pareto distribution

 𝑥 is a random variable: a 

mathematical function that 

maps outcomes of random 

experiments to numbers

 𝛼 is the heaviness of the 

tail distribution
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2.22

Pareto distribution

 The parameters 𝛼 and 𝑘 are the shape and location 

parameters, respectively. 

 The Pareto distribution is applied to model self-

similar arrival in packet traffic. 

 Other important characteristics of the model are 

that the Pareto distribution has infinite variance, 

when 𝛼 ≤ 2 and achieves infinite mean, when 𝛼 ≤ 1.



2.23

Pareto distribution

 If 𝑋 is a random variable with a Pareto distribution, 

then the probability that 𝑋 is greater than some 

number 𝑋, i.e. the survival function (also called tail 

function), is given by

ത𝐹 𝑥 = 𝑃 𝑋 > 𝑥 = ቐ(
𝑘

𝑥
)𝛼 , 𝑥 ≥ 𝑘

1 , 𝑥 < 𝑘

where 𝑘 is the (necessarily positive) minimum possible 

value of 𝑋, and 𝛼 is a positive parameter. 



2.24

Pareto distribution

 The Pareto distribution is 

characterized by a scale 

parameter 𝑘 and a shape 

parameter 𝛼, which is 

known as the tail index.

 CDF of Pareto distribution

𝐹𝑝 𝑥 = 1 −
𝑘

𝑥

𝛼

Pareto probability density functions for various 𝜶 with 𝒌 = 𝟏.

Pareto cumulative distribution functions for various 𝜶 with 𝒌 = 𝟏.



2.25

Pareto distribution

 𝑃 𝑋 > 𝑥 =
𝑘

𝑥

𝛼
for all 𝑥 ≥ 𝑘 where 𝛼 is a 

positive parameter and 𝑘 is the minimum possible 

value of 𝑥

 The probability distribution and the density functions 

are represented as:

𝐹 𝑥 = 𝑥
∞
𝑓 𝑥 𝑑𝑥 = 1 −

𝑘

𝑥

𝛼

where 𝛼, 𝑘 ≥ 0 , 𝑥 ≥ 𝛼 , 𝑓 𝑥 = 𝛼𝑘𝛼𝑥−𝛼−1



2.26

Weibull distribution

 The Weibull distributed 

process is heavy-tailed and 

can model the fixed rate in 

ON period and ON/OFF 

period lengths, when 

producing self-similar 

traffic by multiplexing 

ON/OFF sources. 
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2.27

Weibull distribution

 Both parameters 𝑎 and 𝑏
affect the tail distribution

 More sensitive to the value 

of 𝑏

 CDF of Weibull distribution

𝐹𝑤 𝑥 = 1 − 𝑒−(𝑥/𝑎)
𝑏
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2.28

Weibull distribution

 The distribution function in this case is given by:

𝐹𝑤 𝑥 = 1 − 𝑒
−

𝑥
𝑎

𝑏

, 𝑥 ≥ 0

and the density function of the Weibull distribution is 

given as:

𝑓 𝑡 = 𝑏𝑎−𝑏𝑥𝑏−1𝑒
−

𝑥
𝑎

𝑏

, 𝑥 ≥ 0

where parameters 𝑎 > 0 and 𝑏 > 0 are the scale and 

location parameters respectively.



2.29

Weibull distribution

 The Weibull distribution is close to a normal 

distribution. 

 For 𝑎 ≤ 1 the density function of the distribution is L 

shaped and for values of 𝑎 > 1 , it is bell shaped.



2.30

Meaning of heavy-tailed distribution

 Usually, a heavy-tailed distribution describes traffic 

processes such as packet inter-arrival times and burst 

length

 Heavy tailed distributions tend to have many outliers 

with very high values. It means that the arrival rate is 

higher than the service rate.



2.31

Characterizing a traffic process 

 Marginals and Autocorrelation

 Characterizing a traffic process in terms of these 

two properties gives you a good approximate 

understanding of the process, without involving a 

lot of work, requiring complicated models, or 

requiring estimation of too many parameters.

 Recent analysis on traffic measurements on packet-

data networks such as LAN and WAN, show heavy-

tailed, self-similar, fractal, and LRD characteristics.



2.32

How Does Self-Similarity Arise?

 Flows →Autocorrelation → Self-similarity 

 Distribution of flow lengths has power law tail 

→Autocorrelation declines like a power law



2.33

Self-Similarity

 Power Tailed ON/OFF sources →Self-Similarity

log(𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒)

time(1 unit = 500ms)



2.34

Self-similarity indicator

 If the aggregate traffic exhibits time correlation over 

a wide rage of timescales can be characterized by a 

single parameter called Hurst parameter (𝑯)

 Hurst parameter

 Measure of the degree of self-similarity of the 

aggregate traffic stream

 If H gets closer to 1, the degree of self-

similarity increases



2.35

Self-similarity indicator

 Three methods that can measure Hurst 

parameter

 Variance vs Time

 R/S plot

 Whittle Estimator

 Exactly self-similar (𝐻 = 1)

 Asymptotically self-similar (0.5 < 𝐻 < 1)



2.36

Evidence of Self-similarity

 A recent measurement study has shown that 

aggregate Ethernet LAN traffic is self-similar  

 A statistical property that is very different from the 

traditional Poisson-based models

 In 1993, a group at Bellcore recorded a large series 

of highly detailed Ethernet data. By chance, a 

mathematician specializing in self-similarity was 

available, and a complete analysis demonstrated the 

phenomenon beyond any reasonable doubt



2.37

Evidence of Self-similarity

 The proof is best illustrated graphically. The original 

study provided the best available graphical 

demonstration of the problem

 Self-Similarity refers to distributions that exhibit the 

same characteristics at all scales.

 This is clearly not the case for Poisson traffic. 



2.38

Evidence of Self-similarity

 As bin sizes increase, 

Poisson traffic will 

“smooth,” eventually 

reaching a flat line at 

the distribution mean. 

 Truly self-similar traffic 

will not; it will continue 

to show bursts at all 

scales.



2.39

Evidence of Self-similarity

 On the left, we have a real 

network trace appearing 

at different time scales.

 On the right, we have a 

pure Poisson process 

generating synthetic traffic 

at the same time scales. 



2.40

Evidence of Self-similarity

 The packet counts are renormalized to an appropriate 

scale as the time scale changes. The difference is 

clearest at the largest time scales.

 Both Poisson processes and self-similar processes are 

bursty at the correct time scales. However, unlike 

Poisson processes, self-similar process bursts have no 

natural length. 

 Bursts are evident from the 10ms scale all the way to 

the 100 seconds scale.



2.41

Meaning of Self-similarity

 If you plot the number of packets observed per time 

interval as a function of time, then the plot looks 

‘‘the same’’ regardless of what interval size you 

choose 

 No matter what time scale you use to examine the 

data, you see similar patterns

E.g., 10 msec, 100 msec, 1 sec, 10 sec,...



2.42

Meaning of Self-similarity

ⅰ) Burstiness exists across many time scales

ⅱ) No natural length of a burst

ⅲ) Traffic does not necessarily get ‘‘smoother” when you 

aggregate it (unlike Poisson traffic)



2.43

Several equivalent fashions of Self-similarity 

 Slowly decaying variance

 Long range dependence

 Non-degenerate autocorrelations

 Hurst effect



2.44

Slowly decaying variance: Variance-Time Plot

 The variance of the sample decreases more slowly 

than the reciprocal of the sample size

 For most processes, the variance of a sample 

diminishes quite rapidly as the sample size is 

increased, and stabilizes soon

 For self-similar processes, the variance decreases 

very slowly, even when the sample size grows quite 

large



2.45

Variance-Time Plot

 Plots the variance of the sample versus the sample size that 

is changed to the log value 𝑚, on a log-log plot: 

𝑉𝑎𝑟 𝑋 𝑚 = 𝜎2𝑚−𝛽

log 𝑉𝑎𝑟 𝑋 𝑚 = log 𝜎2𝑚−𝛽 = −βlog𝑚 + log 𝜎2

So, −𝛽 is slope. 

 The ‘‘variance-time plot” is a well known technique for 

testing the behavior of the variance with respect to the time 

scale.



2.46

Variance-Time Plot

 For most processes, the 

result is a straight line 

with slope -1

 For self-similar, the line is 

much flatter

H = 1 −
𝛽

2

Sample size m on a logarithmic scale

Variance of sample on a logarithmic scale
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