

Analysis of traffic characteristics(Self-similar)

<Results of Joo and Ribeiro's study>

:Traffic characteristics are also different because the probability distribution of the transport file size is different for each application.

 Web traffic: Small TCP transmission multiple times, each TCP connection starts slowly.

 \rightarrow High utilization of available bandwidth, small variance

Analysis of traffic characteristics(Self-similar)

- FTP Traffic: Large-capacity file transfer
 - \rightarrow High possibility of avoiding congestion
 - \rightarrow Low bandwidth utilization
 - \rightarrow Self-similarity
- HTTP Traffic: \rightarrow Self-similarity
- E-mail applications: → No Self-similarity

- It is another term to describe the selfsimilarity of traffic
- A fractal process is characterized by significant long bursts

- Downloading large files
 - e.g. video files, long periods of high levels of VBR video, intensive bursts of database activities

- The fractal (or selfsimilar) model obtained by fitting the traffic mean, variance and Hurst parameter is displayed.
- As can be seen, this model exhibits burstiness at all time scales as the original traffic.

- Current WAN(Wide Area Networks) traffic is often described as multi-fractal.
- Multi-fractal traffic can be considered as an extension of self-similar traffic, it can capture more irregularities in the distribution.

Internet traffic

Fractional Gaussian (fractal) noise models measurements well.

Hurst parameter *H* is an aggregate measure of long-range correlations.

"bursty" on all time scales

This table summarizes some typical traffic types and associated traffic distributions and models

Traffic types	Traffic distribution	Frequently used traffic models
Individual source traffic	Heavy-tailed ON/OFF distribution	ParetoWeibull
Individual application traffic or LAN	Self-similar	FGNFARIMA
Aggregate traffic	LRD Multifractal	 Fractional Brownian motion(FBm) model M/G/∞ M/Pareto

Traffic distributions and frequently used traffic models

Traffic distributions and frequently used traffic models

- "Why does the traffic display these characteristics?"
- It is pointed out that heavy-tailed nature of ON and OFF periods has more to do with basic properties of information storage and processing.
- It is not a result of the network protocols or user preference.
- Therefore, changes in protocol processing and document display cannot remove the self-similarity of the web traffic.

- Also, it is shown that both the user's thinking or reading times and the file-size distributions are strongly heavy-tailed.
- In addition, Internet provides explicit support for multimedia formats; the file distribution is strongly heavy-tailed.
- Often, self-similarity in today's network traffic is explained in terms of application traffic.

- The burst data traffic and VBR real-time applications such as compressed video and audio display a certain degree of correlation between arrivals and slow LRD in time.
- As a result, the aggregate traffic is self-similar.
- Or, it could be the high variety of individual connections (i.e. infinite variance) that contributes to the aggregate traffic.

- Overall, the factors, apart from application traffic itself, that contribute to the self-similar nature and the LRD behavior of the emerging network traffic are
 - User behavior- user-reading time and userinduced delay
 - File- size distribution
 - Set of files available in the server

Traffic distribution	Description
Poisson	Session arrival process
Exponential	Session duration
Heavy-tailed	Suitable for burst individual source traffic with ON/OFF patterns
• Pareto	File-transfer time distribution, user-reading(thinking) time, user-induced delay
• Weibull	Machine-processing time, file downloading time

Traffic distributions and suitable applications

Traffic distributions and suitable applications

Current and future models: fluid traffic model

In this model, traffic is considered as volume and is characterized by a flow rate.

Suitable to model the traffic where the individual traffic unit is insignificant

e.g. individual cells in broadband ISDN(B-ISDN) ATM networks

- Here, larger traffic units provide a simpler and better analysis of the network performance as well as saving, simulation, and computing resources.
- Suitable for modeling burst traffic with ON/OFF patterns

- Following assumptions are made
 - i) The ON-state traffic arrives deterministically at a constant rate
 - ii) Traffic is switched off during the OFF state

iii) The ON and OFF periods are exponentially distributed and mutually independent

- Fractional ARIMA
 - Most commonly used model
 - Can model both LRD and SRD processes simultaneously
 - particularly useful to simulate the queuing performance of SRD and LRD traffic simultaneously

- Fractional ARIMA
 - Provides quick simulation
 - By changing the parameters that affect the degree of SRD and LRD, we can identify the parameters that are more or less sensitive to SRD or LRD

Fractional Gaussian Noise (FGN)

- Most frequently used stochastic model for selfsimilar traffic modeling
- Suitable for burst data and multimedia application traffic modeling with a prevalence of LRD
- Provides a good estimation of queuing performance for aggregate traffic.

- Transform-Expand-Sample (TES)
 - Can capture both the marginal distributions and the autocorrelations of the measured traffic
 - Should satisfy the following three requirements

i) The histogram of measured traffic matches the model's marginal distribution

ii) The model's autocorrelations should match the measured traffic up to a reasonable lag

iii) Good correspondence exists between the sample paths of the simulated and the measured data

- Fractional Brownian motion (FBm)
 - Gaussian process with a mean zero and stationary increments
 - Should satisfy the following three requirements simultaneously:

■ M/G/∞

- Is chosen to generate self-similar arrivals
- Introduces multifractal behavior at small/medium timescales without affecting the asymptotic self similarity
- More conservative than FBm as it predicts a stricter queuing performance

M/Pareto

- A particular type of the general $M/G/\infty$ model
- Simple and useful to estimate the queuing performance of a variety of realistic multimedia traffic streams
- The superposition of multiple independent M/Pareto processes is an M/Pareto process with a combined Poisson rate, λ

- M/Pareto
 - With an appropriate choice of λ the M/Pareto process provides an accurate prediction of the queuing performance.
 - Some of drawbacks
 - There is no systematic way of calculating the appropriate value of λ
 - Difficult to estimate the Hurst parameter, H, from a finite data set

Traffic model	Applications	Mathematical complexity	Computing complexity	Advantages	Disadvantages
Poisson	 Voice Large number of independent traffic streams 	Low	Low	 Oldest and commonly used model Superposition of Poisson process is a new Poisson Memory-less process 	 Fails to capture autocorrelation Optimistic estimation of queuing performance for burst traffic
Markov	N/A	High	High	 Capable of capturing correlation of traffic (i.e. nonzero autocorrelations) 	InflexibleComplexity overshadows accuracy
MMPP	A single traffic source with variable rates	Low	Low	 Simple and flexible Possible to capture some degree of correlation of traffic 	Inadequate autocorrelationUnsuitable for LRD traffic
Fluid	ATM trafficBursty traffic	Medium	Low	 Simple Fast simulation Suitable to model bursty traffic with ON/OFF patterns 	 Unsuitable for variable rate traffic
Fractional ARIMA	 Voice Bursty data and multimedia traffic 	Low	Medium-high	 Flexible Suitable for self-similar traffic with SRD and LRD 	 High computing complexity
TES	 Broadband traffic streams Nonstationary traffic 	Medium	Low	 Fast simulation Suitable to capture both marginal and autocorrelation function of the traffic 	 Requires high programming complexity

Self-similar and LRD traffic models: Traditional, current, and future traffic models

Traffic model	Applications	Mathematical complexity	Computing complexity	Advantages	Disadvantages
Gaussian	 Aggregated network traffic 	Low	Low	 Simple Good representation of network traffic as more traffic is aggregated together 	 Overly optimistic estimation of network performance if the aggregation level is low
FBm (continuous-time)	 Real-audio Real-video Aggregated network traffic 	Low	Medium-high	 Flexible No need to select a sampling interval Simplest Gaussian model to capture today's network traffic 	 Unsuitable for small timescales simulation Optimistic estimation of queuing performance
Fractional Gaussian noise (Discrete-time)	• Burst data & multimedia application traffic	Medium	Medium	 Simple and flexible Possible to capture some degree of correlation of traffic 	 Unsuitable for self- similar traffic with both SRD and LRD
Hyper-Erlang	User mobilitySelf-similar traffic	Low	Low	 Simple and general Provides a good user mobility model in wireless and mobile networks 	 Unsuitable in traffic management context
M/Pareto	 Broadband traffic streams (Ethernet, IP) 	Low	Low-medium	 Simple Suitable for current network traffic where traffic is not Gaussian enough Good estimation of queuing performance 	 Inadequate marginal distribution or autocorrelation function No simple formula to determine the appropriate value for <i>λ</i> or <i>H</i>
M/G/∞	 Aggregated network traffic 	Medium	Medium	 Introduce multifractal behavior at small/medium timescales Good estimation of queuing performance 	

Self-similar and LRD traffic models: Traditional, current, and future traffic models

E-mail traffic

- ON Weibull distribution
 - The message is downloaded from the mail server to the mobile terminal during the ON period
 - The length of the ON period depends on the message size and the instantaneous throughput available to the user

E-mail traffic

- OFF Pareto distribution
 - probability that users will finish reading an email in X time

WWW traffic

ON – Pareto distribution

The file is transferred on the downlink and the ON period depends on the file size and the available downlink bandwidth

WWW traffic

Active OFF time – Weibull distribution

- The time needed to processes transmitted files (format, display a document component)
- Inactive OFF time Pareto distribution
 - User reading time

Active and inactive OFF patterns in WWW traffic

- Web file size
 - Web file system prefers documents in the 256-512 byte range
 - Web file systems are currently more biased toward small files than UNIX systems

- Web file size
 - Text (smaller than 1000 bytes)
 - image(1000-30000 bytes)
 - audio(30000-3000000 bytes)
 - video(30000 bytes)

FTP traffic

- The behavior of the FTP sessions is similar to e-mail but with larger file sizes and longer ON periods
- ON Pareto
- OFF Weibull
 - Depends on the user-induced delay such as user think time and typing speed

FARIMA

- Used in voice and bursty data & multimedia traffic
- Self-similar traffic with both SRD and LRD
- Ethernet traffic modeling, LAN, cooperate network

TES

- Used in Broadband traffic streams and nonstationary traffic
- Self-similar traffic with both SRD and LRD
- LAN, cooperate network traffic modeling

FGN

- Used in Burst data & multimedia application traffic
- Self-similar traffic with LRD only
- WAN

 Although it is hard to determine the sufficient aggregation level where short-range dependence(SRD) effects can be ignored, if the traffic is aggregated enough, SRD would be averaged out. We only need to consider the LRD properties.

M/Pareto

- Used in Burst data & multimedia application traffic
- LRD
- Multimedia traffic, broadband traffic in general

■ M/G/∞

- Used in aggregated network traffic
- Multifractal LRD traffic
- WAN